Abstract

Temperature effects in the polymer laser sintering process are an important aspect regarding the process reproducibility and part quality. Depending on the job layout and position within the part cake, individual temperature histories occur during the process. Temperature history dependent effects are for example part warpage, the crystallization rate and powder ageing effects. This work focuses on temperatures and heat flow within laser sintered part cakes. Therefore, a thermal Finite Element (FE) model of a part cake is developed based on experimental in-process temperature measurements. Thermal boundary conditions and properties of the used bulk polymer powder are analyzed and relevant parameters are identified. The model is validated and optimized considering different job heights and ambient conditions during the cooling phase. It is finally possible to predict position-dependent temperature histories as a function of significant job parameters. The model allows a transfer of the results for varied boundary conditions during cooling. In combination with an implementation of built parts, this model will be an important tool for the development of optimized process controls and cooling strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call