Abstract

AbstractDevelopment of landfast sea ice and its snow cover was monitored in the Gulf of Bothnia, Baltic Sea, for a period of 4 weeks during the early melt season of 2004. During this period, approximately 90% of the snow layer was transformed into superimposed ice, while the rest sublimated. A one-dimensional thermodynamic snow/ice model was used to simulate this process. The modelled snowmelt and superimposed ice growth were consistent with the observations, but the net accumulation of superimposed ice was slightly overestimated. The errors in calculation of temporal variations of the refreezing were probably due to the uncertainties in the external forcing and simplification of snow processes in the model. The modelled snow thickness was sensitive to the atmospheric forcing, and the influence was amplified when the albedo was parameterized as a function of surface temperature. In the sensitivity tests without this feedback, the direct effect of the inaccuracy in the albedo parameterization was minor. Errors in the parameterized longwave radiation were critical for the modelled snow surface temperature during night-time, but did not have a large effect on the mass balance during this spring melt period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call