Abstract

A recently developed explicit algebraic Reynolds-stress (EARS) model is validated for an idealized representation of the night-time high-latitude stably stratified atmospheric boundary layer. The simulations are made with four surface cooling rates that result in weakly to moderately stratified stable boundary layers. The predictions of the EARS model are compared to high-resolution large-eddy simulations (LES) of Sullivan et al. (J Atmos Sci 73(4):1815–1840, 2016). First- and second-order statistics are shown to be well predicted by the EARS model. The EARS model also predicts the horizontal turbulent fluxes and turbulence anisotropy and these compare well with the LES results. The sensitivity to the model coefficients is studied by comparing the EARS model results with LES results. Finally, we propose a new scaling for the production of turbulence kinetic energy and show that the EARS model captures the essential trends of the LES results for different cooling rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.