Abstract

Sorption-enhanced steam reforming (SE-SR) offers lower capital costs than conventional steam reforming with carbon capture, which arises from the compact makeup that allows reforming and CO2 capture to occur in a single reactor. However, the technology readiness level (TRL) of SE-SR technology is currently low and large-scale deployment can be expedited by ramping up activities in reactor modelling and validation at pilot scale. This work first explores the concept of SE-SR technology, then the experimental activities and pilot tests performed for this technology, followed by the review of progress made on SE-SR modelling. It was found that the Eulerian-Eulerian two-fluid model is the most popular approach widely adopted for modelling SE-SR in fluidised bed reactors. However, the averaging method used to close equations ignores flow details at particle level and simplifies the particle system. Moreover, while hydrogen purity and yield have been predicted within an acceptable error, larger errors for CO2 gas output relative to experimental data have been reported for this model type. Limitations and future perspectives for reactor designs and the various models and modelling approaches are also analysed, to provide guidance and advance research, modelling and scaleup of SE-SR technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call