Abstract
AbstractAntimicrobial packaging protects the product from the external environment and microbial contamination, conferring numerous advantages on human health. Interest in biopolymers as packaging materials has considerably increased recently. Bacterial cellulose is an interesting biomaterial produced as nanofibrils by Acetobacter xylinium and is a promising candidate due to its remarkable properties. New composite materials with antimicrobial properties were developed in this work, containing poly(vinyl alcohol) (PVA) as polymer matrix and ground bacterial cellulose (BC) as reinforcing fibres. Sorbic acid was used as an antimicrobial agent because it is a preservative recognised in the food industry. The materials obtained were studied using Fourier-transformed infrared spectroscopy (FTIR). The swelling rate of the composites was also measured. Release experiments of sorbic acid from the composite films into water were performed and the mass transfer phenomena were investigated using Fick’s law of diffusion. The antimicrobial effect was tested against Escherichia coli K12-MG1655. The results obtained indicated that the new biocomposite films could be promising antimicrobial food packaging materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemical Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.