Abstract

The Andean Equatorial Region, due to its geographic location, shows great potential for using solar energy. Solar thermal energy is of interest in the residential sector in Ecuador and other Andean countries as a method to avoid fossilderived fuels consumption. However, previous learnings of the operation of solar water heating systems in other latitudes cannot be used in the conditions of Ecuador. Thus, the performance of the solar thermal energy systems in this geographic region deserves further study that consider typical high levels of cloudiness and fast climate oscillations. The objective of this work was to investigate the effect of the orientation of solar thermal plates on their energy efficiency and model the behaviour of these systems to predict their operation under Equatorial Andean climate conditions. For the F-Chart calibration different slopes angles were used, according to the typical roofs slopes in Cuenca, Ecuador. Results showed a monthly solar fraction, contributed by an evacuated tube collector is 26% higher than the flat plate collectors. The results also depict that, in the conditions of Cuenca, the greater solar water heating occurs when the collector is inclined 14° and facing towards the south. These findings can be used to predict the best operational conditions for using solar thermal energy collectors to produce hot water in the residential sector under equatorial highland altitude conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call