Abstract

Slab track is a recent technology used to cope up with the train high axle loads and speed, it has replaced the ballast material in classical ballasted track with either reinforced concrete slab or asphalt layer in order to increase both stability and durability of the railway lines. This paper aims to propose a new slab track design model which can be used to design/analyze any slab track systems under vertical loads using AREMA and EN specifications for high-speed systems (300 kmph). This model has been validated through experimental work held in Heriot-Watt University then applied to the most common slab track systems (BÖGL, Shinkansen, and RHEDA 2000) in the world. The standard section of RHEDA 2000 slab track has shown the best structural performance and efficiency compared with BÖGL and Shinkansen standard sections regarding the rail deflection, stresses of rails, and stress of replacement soil layer and subgrade soil. This paper has concluded the rail deflection is the most critical factor for the slab track design regarding EN specifications while the subgrade stresses is the vital criterion concerning AREMA specifications. Furthermore, EN-Specifications are found to be more conservative than AREMA specifications for the design or analysis of all the slab track types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.