Abstract

Event Abstract Back to Event Modelling of signal processing in neurons Gabriel Wittum1* 1 Ruprecht-Karls-University, Germany The crucial feature of neuronal ensembles is their high complexity and variability. This makes modelling and computation very difficult, in particular for detailed models based on first principles. The problem starts with modelling geometry, which has to extract the essential features from those highly complex and variable phenotypes and at the same time has to take in to account the stochastic variability. Moreover, models of the highly complex processes which are living on these geometries are far from being well established, since those are highly complex too and couple on a hierarchy of scales in space and time. Simulating such systems always puts the whole approach to test, including modeling, numerical methods and software implementations. In combination with validation based on experimental data, all components have to be enhanced to reach a reliable solving strategy. To handle problems of this complexity, new mathematical methods and software tools are required. In recent years, new approaches such as parallel adaptive multigrid methods and corresponding software tools have been developed allowing to treat problems of huge complexity. In the lecture we present a three dimensional model of signaling in neurons. First we show a method for the reconstruction of the geomety of cells and subcellular structures as three dimensional objects. With this tool, NeuRA, complex geometries of neuron nuclei were reconstructed. We present the results and discuss reasons for the complicated shapes. To that end, we present a model of calcium signaling to the nucleus and show simulation results on reconstructed nuclear geometries. We discuss the implications of these simulations. We further show reconstructed cell geometries and simulations with a three dimensional active model of signal transduction in the cell which is derived from the Maxwell equations and uses generalized Hodgkin-Huxley fluxes for the description of the ion channels. Conference: Neuroinformatics 2008, Stockholm, Sweden, 7 Sep - 9 Sep, 2008. Presentation Type: Oral Presentation Topic: Workshop Citation: Wittum G (2008). Modelling of signal processing in neurons. Front. Neuroinform. Conference Abstract: Neuroinformatics 2008. doi: 10.3389/conf.neuro.11.2008.01.148 Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters. The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated. Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed. For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 28 Jul 2008; Published Online: 28 Jul 2008. * Correspondence: Gabriel Wittum, Ruprecht-Karls-University, Heidelberg, Germany, nemoABS01@frontiersin.org Login Required This action requires you to be registered with Frontiers and logged in. To register or login click here. Abstract Info Abstract The Authors in Frontiers Gabriel Wittum Google Gabriel Wittum Google Scholar Gabriel Wittum PubMed Gabriel Wittum Related Article in Frontiers Google Scholar PubMed Abstract Close Back to top Javascript is disabled. Please enable Javascript in your browser settings in order to see all the content on this page.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call