Abstract

The control of erosion processes is an important issue worldwide. In New Zealand, previous studies have shown the benefits of reforestation or bioengineering measures to control erosion. The impetus for this work focuses on linking recent research to the needs of practitioners by formulating quantitative guidelines for planning and evaluation of ground bioengineering stabilisation measures. Two root distribution datasets of ‘Veronese’ poplar (Populus deltoides x nigra) were used to calibrate a root distribution model for application on single root systems and to interacting root systems at the hillslope scale. The root distribution model results were then used for slope stability calculations in order to quantitatively evaluate the mechanical stabilisation effects of spaced trees on pastoral hillslopes. This study shows that root distribution data are important inputs for quantifying root reinforcement at the hillslope scale, and that root distribution strongly depends on local environmental conditions and on the tree planting density. The results also show that the combination of soil mechanical properties (soil angle of internal friction and cohesion) and topographic conditions (slope inclination) are the major parameters to define how much root reinforcement is needed to stabilise a specific slope, and thus the spacing of the trees to achieve this. For the worst scenarios, effective root reinforcement (>2 kPa) is reached for tree spacing ranging from 2500 stems per hectare (sph) for 0.1 m stem diameter at breast height (DBH) to 300 sph for 0.3 m stem DBH. In ideal growing conditions, tree spacing less than 100 sph is sufficient for stem DBH greater than 0.15 m. New quantitative information gained from this study can provide a basis for evaluating planting strategies using poplar trees for erosion control on pastoral hill country in New Zealand.

Highlights

  • IntroductionIn New Zealand, previous studies have shown the benefits of reforestation or bioengineering measures to control erosion

  • The control of erosion processes is an important issue worldwide

  • The number of fine roots per linear metre is used in the model as an input parameter for calculating the root distribution at different distances from the tree stem

Read more

Summary

Introduction

In New Zealand, previous studies have shown the benefits of reforestation or bioengineering measures to control erosion. It is estimated that for each high-magnitude storm event, with estimated return periods in excess of 20–50 years, regionally, up to 10 % of soil area on steep pastoral hillslopes may be lost and as Schwarz et al New Zealand Journal of Forestry Science (2016) 46:4 high as 36 % lost on individual properties (Marden et al 1995; Dymond et al 2006; Rosser and Ross 2011). Studies have shown that the recovery of soil productivity on shallow landslide-eroded areas takes many years, with annual pasture production unlikely to attain more than 80 % of that of un-eroded ground over many decades (Douglas et al 1986; Lambert et al 1984; Rosser and Ross 2011)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.