Abstract

The present work stems from practical experiences in the implementation of a wireless power transfer charging lane based on transmitter coils directly embedded under the road surface. After the embedment, unexpected phenomena appeared which strongly modified the behavior of the coil, thus compromising the effectiveness of the system. This paper proposes the development of a dedicated numerical method based on the Partial Element Equivalent Circuit approach and low–rank compression techniques based on Hierarchical matrices and Adaptive Cross Approximation which allows optimized parametric analysis for the investigation of the main parameters that influence the behavior of the device. The proposed numerical approach is efficiently applied to an embedded transmitting coil with parametric material parameters of the road model. However, the proposed approach is general and can be applied for the study of different electromagnetic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.