Abstract

Fatigue life of structural elements with bolt holes depends mainly on residual stress distribution law around these holes. Residual compressive circumferential normal stresses around the hole reduce operating stress magnitudes to minimum values for cyclic tension and this enhances fatigue life and load-carrying capacity of structures. The presence of residual stresses is a result of the manufacturing process. Residual stresses can also be induced deliberately around the holes by means of appropriate working with suitably chosen parameters. Quantitative knowledge of residual stresses is necessary to model the stress field after applying an external load to a structural element in order to assess static or dynamic strength, fatigue strength including. This paper presents a combined approach consisting of experimental and numerical modelling of residual circumferential normal stress distribution when forming holes in workpieces of medium carbon steel by spherical mandrelling (SM). Since the object of study is residual macrostresses (stresses of first type), a mechanical method of their determination has been employed. On the basis of experimental outcomes, a mathematical model has been built and it predicts mean integral value distribution of residual circumferential normal stresses. Since the range of the experimental technique employed is limited by the wall thickness of the bushing being worked, numerical modelling of residual stresses by means of FE simulation has been performed. The numerical results obtained allow this mathematical model to be applied to various wall thicknesses by introducing correction factors for the polynomial coefficients. At the same time, the adequacy of the proposed FE model can be evaluated only by the experimentally obtained mathematical model. The SM efficiency for enhancing the load-carrying capacity of structural elements with cylindrical holes subjected to tension has been proved by means of FE simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.