Abstract

AbstractIn this work, we present a novel approach to the finite element modelling of reinforced‐concrete (RC) structures that provides the details of the constitutive behavior of each constituent (concrete, steel and bond‐slip), while keeping formally the same appearance as the classical finite element model. Each component constitutive behavior can be brought to fully non‐linear range, where we can consider cracking (or localized failure) of concrete, the plastic yielding and failure of steel bars and bond‐slip at concrete steel interface accounting for confining pressure effects. The standard finite element code architecture is preserved by using embedded discontinuity (ED‐FEM) and extended (X‐FEM) finite element strain representation for concrete and slip, respectively, along with the operator split solution method that separates the problem into computing the deformations of RC (with frozen slip) and the current value of the bond‐slip. Several numerical examples are presented in order to illustrate very satisfying performance of the proposed methodology. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.