Abstract

The microstructure of cellulose microcrystalline-Carbopol ® pellets, prepared under different drying conditions (oven-dried or freeze-dried), was experimentally characterized using mercury intrusion porosimetry and then computationally modelled using Pore-Cor™ software. Connectivity (mean number of throats per pore), pore skew ( σ), throat skew ( q) and correlation level were estimated and simultaneously optimized from the mercury intrusion porosimetry cumulative curves using the Boltzmann-annealed simplex algorithm. Unit cells with percolation properties close to the real ones were generated. Water penetration rate in the simulated structures was also modelled using Pore-Cor™ and the waterfront position was calculated using the Bosanquet equation. A close correlation was found between the simulated water flow rate in the unit cell and the experimental theophylline first-order release rate constant. Thus, modelling of network microstructure and waterfronts appears as an useful tool for predicting drug release rate from matrix pellets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.