Abstract
Significant resources are spent on counteracting the effects of acidification, mainly by liming. Due to lower S and N deposition in Europe and North America, authorities are changing directives and strategies for remediation and reducing liming. However, as the acid–base buffer capacity differs in different water bodies, the desirable reduction of the lime dose is variable. In this study, a geochemical model is used to predict pH and inorganic monomeric Al (Ali) when liming is reduced and finally terminated in the 3000 Swedish lakes currently treated with lime. To estimate Ca and Mg concentrations not affected by liming for use in the model, the Ca/Mg ratio in nearby unlimed reference lakes was used. For the modelling of pH and inorganic Al the Visual MINTEQ program including the Stockholm Humic Model recently calibrated for Swedish fresh water was used. The predictions were validated with modelling results from six monitored lakes, in which liming had been terminated. The use of geochemical modelling appeared to be a promising tool for the calculation of accurate lime requirements in acid waters. For simulations in which liming was completely terminated, the pH value decreased by, on average, 1 pH unit to pH 5.7, whereas Ali increased by 17μgL−1 to 32μgL−1. If liming was reduced by half, the pH would drop only 0.3 pH units and Ali would increase by 2μgL−1. Lakes in the south-western part of Sweden were predicted to reach a lower pH and higher Ali, which would be expected due to their greater historical S deposition. The results indicate that liming can be terminated in certain areas and in other areas be reduced without increases in the lake acidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.