Abstract

The results of 3D FDTD calculations of out-of-plane radiation losses in slow light regime for a 2D Silicon-On-Insulator (SOI) Photonic Crystal (PhC) slab are presented. In a 2D PhC slab structure periodicity causes a scattering out of waveguiding modes to the radiating modes. Optical sensors based on 2D PhCs working in slow light regime call for long devices in order to make the path of light propagation longer. At the same time, slowing down the group velocity of light extends signal interaction time with the investigated surroundings. By using a 3D model of an SOI PhC slab we will present the influence of the hole depth and side walls slope of a 2D PhC on the out-of-plane scattering. The possibility of utilising an interference lithograph to fabricate the modelled structure is discussed as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call