Abstract

A new one-dimensional constitutive model for human cortical bone is proposed to simulate the viscoelastic–viscoplastic behaviour occurring during creep-recovery tests.The material parameters are determined by fitting experimental results of creep-recovery tests reported in the published literature. An efficient computational algorithm for the integration of the proposed constitutive model at the material point level is derived. The derived algorithm in conjunction with the Jacobian matrix is implemented in the finite element code ABAQUS. The model predictions are found to be in good agreement with the experimental data presented in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.