Abstract

The prediction of seismic ground response is conditioned by the knowledge of each material behavior of soil deposits. The recourse to plasticity criterion to simulate cyclic behavior of soils under seismic loading is becoming more realistic. In this study, an elasto-plastic constitutive equation is cast within the framework of one dimensional finite element (FE) soil column model to account for the spatial and material nonlinearity of the secant shear modulus. To account of the spatial non linearity, shear modulus is written in terms of rigid base shear modulus and height of the soil column, while for material nonlinearity, the shear modulus degradation is deducted by the application of the isotropic evolution of the Von Misès criterion. Obtained results proved the efficiency of the proposed methodology and the predictive capability of the elaborated elastoplastic model which captures both small- and large-strain behaviors. They likewise highlight the important roles that play the spatial and material shear modulus variation in the prediction of the seismic soil responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.