Abstract

Molecular dynamic simulations have been successfully utilised with molecular modelling to estimate the glass transition temperature ( T g) of polymers. In this paper, we use a similar approach to predict the T g of a small pharmaceutical molecule, beclomethasone dipropionate (BDP). Amorphous beclomethasone dipropionate was prepared by spray-drying. The amorphous nature of the spray-dried material was confirmed with scanning electron microscopy, differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). Molecular models for amorphous BDP were constructed using the amorphous cell module in Discovery studio™. These models were used in a series of molecular dynamic simulations to predict the glass transition temperature. The T g of BDP was determined by isothermal-isobaric molecular dynamic simulations, and different thermodynamic parameters were obtained in the temperature range of −150 to 400 °C. The discontinuity at a specific temperature in the plot of temperature versus amorphous cell volume ( V) and density ( ρ) was considered to be the simulated T g. The predicted T g from four different simulation runs was 63.8 °C ± 2.7 °C. The thermal properties of amorphous BDP were experimentally determined by DSC and the experimental T g was found to be ∼65 °C, in good agreement with computational simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.