Abstract
ABSTRACTFormation of gas hydrates is one of the problems in the production, processing, and transportation of natural gas. Hence, an understanding of conditions where hydrates form is necessary to overcome hydrate-related issues. The aim of this study was to develop an effective relation between the methane hydrate formation pressure based on the temperature, weight fraction of inhibitor, and molecular weight of inhibitor using the least square support vector machine. This computational model indicates the great ability of predictions for determining hydrate pressure in the presence of different inhibitors such as the methanol, ethylene glycol, diethylene glycol, and triethylene glycol. The values of R-squared (R2) and mean squared error obtained for this model are 0.9925 and 0.2325, respectively. This developed predictive tool can be applied as an accurate estimation of methane hydrate formation pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.