Abstract

ABSTRACTThis research work was conducted to investigate the impact of critical processing conditions on the selected mechanical properties of maize in the production of fermented ogi slurry. Five varieties of maize (A4W, C3Y, D8W, B2Y, and E9W) were soaked at 28 ºC and average hot soaking at 65ºC, respectively, for 96 h at 12-h interval. Selected mechanical properties were evaluated based on a 5 × 2 × 9 factorial design (varieties× soaking methods× soaking periods). Force (FB) and energy required to break (EB) maize grains decreased significantly (p < 0.05) up to the 12th hour. The EB reduced from 873.3 to 70.0 N mm and from 873.3 to 77.8 N mm for variety E9W at soaking conditions of 28ºC and 65ºC, respectively. Similar trends were observed for other maize varieties. Modulus of elasticity and resilience decreased significantly (p < 0.05) with increase in soaking period and moisture content. The EB to break maize grains was directly proportional to the product of Young’s modulus and area (Em A1.5), the FB and area (Fm A°.5) and force required to break and geometric mean diameter (F Dg2) of maize grains with a high R2 (0.9610.999). This study suggested that the duration of soaking between 12 and 24 h should be enough to significantly (p > 0.05) reduce the hardness, force, and energy required to break whole maize grains in the production of this fermented product and relevant for predicting minimum required energy for a large-scale operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call