Abstract

The biomechanical efficiency of oral implants is deeply influenced by mechanical properties of cortical and trabecular bone in the jaw and, in particular, in the peri-implant region. When the mechanical response of the implant–bone system is analysed by means of numerical models, the effective mechanical properties of bone and the possible change as a function of spatial position must be carefully considered. The procedure presented provides for the attribution of the mechanical properties of bone, considered as anisotropic elastic material, as a function of the spatial position making use of Fourier series and polynomial functions. The procedure is implemented in a general purpose finite element software, adopted to develop biomechanical analyses of prosthetic systems. This procedure allows for an accurate representation of bone tissue properties. Results pertaining to the analysis of commercial oral implants show the potential of the method adopted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.