Abstract

The aim of this work is to present a model of load transfer between porous matrix and short fibres in ceramic matrix composites. This analysis is based on the earlier shear-lag models used for polymeric composites. However, geometry and strength of fibres in addition to the matrix porosity are included in the present analysis. The theoretical curves for the longitudinal and shear stresses distributions along the fibre-porous matrix interface are presented. They exhibited a maximum strength point at the middle of the short fibres. It became evident that the critical length is governed by the relative properties of the fibres, matrix and porosity, which greatly influenced the load carrying capacity of the fibres in the composites. In addition, the present simplified solution facilitates the understanding of the interface mechanism using porous matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.