Abstract

Summary Thermomechanical processes observing in deformable solids under intensive dynamic or quasi-static loadings consist of coupled mechanical, thermal and fracturing stages. The fracturing processes involve formation, motion and interaction of defects in crystals, phase transitions, breaking of bonds between atoms, accumulation of micro-structural damages (pores, cracks), etc. Irreversible deformations, zones of adiabatic shear micro-fractures are caused by these processes. A dynamic fracturing is a complicated multistage process, which includes appearance, evolution and confluence of micro-defects and formation of embryonic micro-cracks, pores that can grow and lead to the breaking-up of bodies with formation of free surfaces. This results in a need to use more advanced mathematical and numerical techniques. This talk presents modeling of irreversible deformation near the tip of a crack in a porous domain containing oil and gas during the hydraulic fracturing process. The governing equations for a porous domain containing oil and gas are based on constructing mathematical model of thermo-visco-elasto-plastic media with micro-defects (micro-pores) filled with another phase (e.g., oil or/and gas). The micropores can change their size during the process of dynamical irreversible deformation. The existing pores can expand or collapse. The model was created by using the fundamental thermodynamic principles and, therefore, it is a thermodynamically consistent model. All the processes (i.e., irreversible deformation, fracturing, micro-damaging, heat transfer) within a porous domain are strongly coupled. Therefore, explicit normalized-corrected meshless method is used to solve the resulting governing PDEs. The flexibility of the proposed technique allows running efficiently using a great number of micro- and macro-fractures. The results are presented, discussed and future studies are outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.