Abstract

In this paper, an improved model for non-local band-to-band tunneling carrier transport is presented and compared to experimental measurement from GaAs tunnel junctions devices. By carefully taking into account the coupling between the conduction band and the light holes valence band, the model is able to predict, with realistic material parameters, the amplitude of the current density throughout the whole tunneling regime. The model suggests that elastic band-to-band tunneling instead of trap-assisted-tunneling is the predominant mechanism in GaAs tunnel junctions, which is of great interest for better understanding and improving III–V multi-junction solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call