Abstract

A new collisional-radiative model for a mercury-free low pressure plasma based on an indium(I) iodide-argon system is presented. The electron impact cross sections and rate coefficients for ionization, excitation and dissociation, as well as de-excitation, three-body recombination and dissociative recombination, of studied fillings have been calculated. Additionally, the coefficients for free and ambipolar diffusion were determined. The rate balance equations for individual generation and loss processes have been created. Densities of ions, electrons and neutral particles (ground or metastable state) are presented as a function of electron temperature for varied lamp parameters, such as argon buffer gas pressure and cold spot temperature (coldest point of discharge vessel). With the help of the presented model, the line emission coefficients of essential emission lines of indium for given electron temperatures and densities can be predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.