Abstract
Large lattice and thermal expansion coefficients mismatches between III-Nitride (III N) epitaxial layers and their substrates inevitably generate defects on the interfaces. Such defects as dislocations affect the reliability, life time, and performance of photovoltaic (PV) devices. High dislocation densities in epitaxial layer generate higher v-shaped pits densities on the layer top surface that also directly affect the device performance. Therefore, using an approach such as the embedded void approach (EVA) for defects reduction in the epitaxial layers is essential. EVA relies on the generation of high densities of embedded microvoids (~108/cm2), with ellipsoidal shapes. These tremendous number of microvoids are etched near the interface between the III N thin-film and its substrate where the dislocation densities present with higher values. This article used a 3-D constitutive model that accounts the crystal plasticity formulas and specialized finite element (FE) formulas to model the EVA in multi-junction PV and therefore to study the effect of the embedded void approach on the defects reduction. Mesh convergence and 2-D analytical solution validation is conducted with accounting thermal stresses. Several aspect and volume ratios of the embedded microvoids are used to optimize the microvoid dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.