Abstract

The discharge capacity of a tunnel drainage system generally decreases with time because of the hydraulic deterioration of the geotextile filter. Hydraulic deterioration restricts groundwater flow into a tunnel and increases water pressure resulting in detrimental effects on the tunnel lining. Hydraulic deterioration of tunnel drainage system is unique in terms of clogging materials, deterioration mechanism, and flow conditions. Current studies and models investigating the clogging mechanism and hydraulic deterioration are not directly applicable to the geotextile filter of the tunnel drainage system. In this study, a theoretical model of the hydraulic deterioration of tunnel geotextile filter has been proposed considering the mechanical and hydraulic behavior of blinding, clogging and squeezing. A parametric study was carried out to evaluate the performance of the model. An experimental study has been conducted to investigate the clogging behavior of the tunnel drainage system and validate the theoretical model. Several types of clogging materials were selected: cement-leaching calcium oxide, calcium carbonate, iron oxide, and bentonite. Agglutinated clogging was mainly observed during the short-term testing. The findings suggest that the in-plane permeability of the geotextile filter decreased by approximately 90%. The proposed model corroborated the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call