Abstract
Hydrolysis of hemicelluloses with acid catalysts yield different sugar monomers and oligomers, depending on the substrate as well as the process design. The hydrolysis kinetics are typically rather slow, which leads to requirements of long residence times, i.e. slow flow rates, in order to achieve adequate conversion. Hydrolysis experiments of two different polysaccharides – o-acetylgalactoglucomannan (GGM) and inulin - were conducted in an isothermal tubular continuous reactor in laboratory scale, working in the laminar flow regime. A dynamic mass balance-based reactor model was developed, including convection and molecular diffusion in axial and radial directions, as well as the self-accelerating kinetics of the reaction. The model gave a very satisfactory description of the experimental data. The behavior of the laminar flow reactor in the hemicellulose hydrolysis was further illustrated by numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.