Abstract

Abstract Fault detection and diagnosis in mechanical systems during their time-varying nonstationary operation is one of the most challenging issues. In the last two decades or so researches have noticed that machines work in nonstationary load/speed conditions during their normal operation. Diagnostic features for gearboxes were found to be load dependent. This was experimentally confirmed by a smearing effect in the spectrum. In order to better understand the involved phenomena and to ensure agreement between simulation and experimental results, two models of gearboxes (a fixed-axis two-stage gearbox and a planetary gearbox) operating under varying load conditions are proposed. The models are based on two mechanical systems used in the mining industry, i.e. the belt conveyor and the bucket wheel excavator. An original transmission error function expressing changes in technical condition and load variation is presented. Energy based parameters (the signal RMS value or the arithmetic sum of the amplitudes of spectral gearmesh components) are adopted as the diagnostic features. Simulation results show a strong correlation between load values, changes in condition and the diagnostic features. The findings are key to condition monitoring. Thanks to the use of the models one can better understand the phenomena identified through an analysis of vibration signals captured from real machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.