Abstract

ABSTRACTWe present detailed chemical reaction mechanisms that describe the deposition of GaAs films from tertiary-butyl-arsine (TBA) and trimethyl-gallium (TMG) as well as the deposition of AlxGa1-xAs (0≤x≤1) films from trimethyl-aluminum (TMAl), TMG and arsine during metalorganic vapor phase epitaxy (MOVPE). The kinetic models include both gas-phase and surface reactions, whose rates are used to predict production or consumption of the participating species as well as the growth rate of the film. Two-dimensional simulations of flow, heat and mass transfer in horizontal MOVPE reactors have been coupled with the kinetic models to provide a realistic picture of the process. The predicted growth rates at different operating conditions as well as the predicted incorporation ratio, x, of Al in the AlxGal-xAs films are in good agreement with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.