Abstract

In order to understand the structural basis of Factor Xa (FXa) specificity, structural complexes of FXa with its synthetic inhibitors are determined using a computational docking approach. The AutoDock suite of programs is used to determine the binding modes of the synthetic inhibitors such as 3- and 4-amidinobenzylphenyl ether (ABP), amidinophenyl pyruvic acid (APPA), diamidinobenzofuranyl ethene (DABE), and DX-9065a 2-(5'-amidino-2'-benzofuranyl)-3-(7'amidino-2'-napthyl)-propionic acid (ABAP) to FXa. The synthetic inhibitors docked in the present study are different in size, nature of linkage, and properties. Two sets of simulations were carried out for synthetic inhibitors docking to FXa. In the first set of simulations, no explicit water molecules were included. In the second set of simulations two explicit solvent molecules were considered. In all the computationally predicted synthetic inhibitor complexes of FXa, the specificity pocket residue Asp-189 is involved in hydrogen bonding with the bound inhibitor. The active site water molecule WAT522 is involved in hydrogen bonding with all the bound inhibitors. The computed energies clearly discriminate the high affinity from low affinity binders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call