Abstract

AbstractDecomposition of a synthetic core of methane hydrate has been modelled by Selim and Sloan (1985) and Ullerich et al. (1987) based on heat transfer considerations. In the present work, the decomposition is modelled by coupling intrinsic kinetics with heat transfer rates. Numerical simulation results are presented to show the effects of incorporating the intrinsic kinetic rate of decomposition. Simulation results indicate that by changing the system pressure we can move from a heat transfer controlled regime to a regime where both heat transfer and intrinsic kinetics have a significant effect on the global rate of decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.