Abstract
Simulation of both damage development and strain ratchetting in uniaxial loading conditions has been presented for a nickel-based superalloy at 650°C using the unified Chaboche viscoplastic model. A third kinematic hardening component was employed to simulate strain ratchetting; and a damage variable, based on plastic strain development, was also incorporated to simulate the damage evolution behaviour. Good agreement between the model predictions and the experimental results was obtained for both damage evolution and strain ratchetting. The model was then utilised to investigate the cyclic deformation behaviour near a crack tip for a single edge notch tension (SENT) specimen. Finite element analyses showed that strain ratchetting is seems to be a characteristic of the fatigue crack tip, which has been used as a criterion to predict the crack growth rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.