Abstract
A new phenomenological model of cyclic creep is proposed which is suitable for applications involving finite creep deformations of the material. The model accounts for the the effect of the transient increase of the creep strain rate upon the load reversal. In order to extend the applicability range of the model, the creep process is fully coupled to the classical Kachanov-Rabonov damage evolution. As a result, the proposed model describes all the three stages of creep. Large strain kinematics is described in a geometrically exact manner using the assumption of a nested multiplicative split, originally proposed by Lion for finite strain plasticity. The model is thermodynamically admissible, objective, and w-invariant. Implicit time integration of the proposed evolution equations is discussed. The corresponding numerical algorithm is implemented into the commercial FEM code MSC.MARC. Using this code, the model is validated using real experimental data on cyclic torsion of a thick-walled tubular specimen made of the D16T aluminium alloy. The numerically computed stress distribution exhibits a "skeletal point" within the specimen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.