Abstract

An approximate theory for cross-ply piezoelectric composite laminates in cylindrical bending with interfacial shear slip is developed. This theory uses only 4 displacement and potential variables, the number of which is independent of the number of layers involved. The displacement and electric potential fields are depicted by the displacement and electric potential distribution functions through thickness, respectively. The two functions are formulated according to particular solutions to the three-dimensional elasticity equilibrium equations and electrostatics charge equation. In this shear slip modelling interfacial opening is neglected. The interfacial bonding conditions are characterised by a linear slip law and an electrically permeable assumption. A corresponding finite element is also developed to deal with piezoelectric laminates with local shear slip. The accuracy and effectiveness of the present theory are demonstrated in numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.