Abstract

An original 3D model was used to numerically examine convective heat-and-mass transfer processes in the melt during the growth of polycrystalline silicon in vertical Bridgman configuration. The flow in the liquid was modelled using the Navier — Stokes equations in the Boussinesq approximation. The distribution of dissolved impurities was determined by solving the convective diffusion equation. The effects due to non-uniform heating of the lateral wall of the vessel and due to the shape of the crystallization front on the structure of melt flows and on the distribution of dissolved impurities in the liquid are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call