Abstract

This paper is focused on the investigation of vortex rings evolving in a tube. A new theoretical model for a confined axisymmetric vortex ring is developed. The predictions of this model are shown to be in agreement with available experimental data and numerical simulations. The model combines the viscous vortex ring model, developed by Kaplanski & Rudi (Phys. Fluids, vol. 17, 2005, 087101), with Brasseur’s (PhD thesis, Stanford University) approach to deriving a wall-induced streamfunction correction. Using the power-law assumption for the time variation of the viscous length of the vortex ring, the time variations of the main integral characteristics, circulation, kinetic energy and translational velocity are obtained. Direct numerical simulation (DNS) is used to test the range of applicability of the model and to investigate new physical features of confined vortex rings recently reported in the experimental study by Stewart et al. (Exp. Fluids, vol. 53, 2012, pp. 163–171). The model is shown to lead to a very good approximation of the spatial distribution of the Stokes streamfunction, obtained by DNS. The vortex signature and the time evolution of the energy of the vortex are also accurately predicted by the model. A procedure for fitting the model with realistic vortex rings, obtained by DNS, is suggested. This opens the way to using the model for practical engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.