Abstract

The hydrologic regime of the Lake Winnipeg watershed (LWW), Canada, is dominated by spring snowmelt runoff, often occurring over frozen ground. Analyses of regional climate models (RCMs) based on future climate projections presented in a companion paper of this special issue (Dibike et al., 2012) show future increases in annual precipitation and temperature in various seasons and regions of this catchment. Such changes are expected to influence the volume of snow accumulation and melt, as well as the timing and intensity of runoff. This paper presents results of modelling climate-induced hydrologic changes in two representative sub-catchments of the Red and Assiniboine basins in the LWW. The hydrologic model, Soil and Water Assessment Tool (SWAT), was employed to simulate a 21-year baseline (1980–2000) and future (2042–2062) climate based on climate forcings derived from 3 RCMs. The effects of future changes in climatic variables, specifically precipitation and temperature, are clearly evident in the resulting snowmelt and runoff regimes. The most significant changes include higher total runoff, and earlier snowmelt and discharge peaks. Some of the results also revealed increases in peak discharge intensities. Such changes will have significant implications for water availability and nutrient transport regimes in the LWW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.