Abstract

Chloride diffusuion is regarded as the dominant chloride transport process in concrete and the main cause of the corrosion of steel in concrete structures exposed to chloride-rich environments. Surface biodeposition can be applied to both new and existing concrete structures to restrain this deterioration. To gain comprehensive overview to the protective mechanism of surface biodeposition, a theoretical study of chloride diffusion through surface-biodeposited concrete is required. This paper proposes a physical model for surface biodeposited concrete, and develops a theoretical model to predict chloride diffusion of surface-biodeposited concrete structures. The model describes movement and retention of moisture and chloride by means of balance equations and diffusion laws. The influences of biodeposition and substrate properties on chloride diffusion are studied by a finite difference model. Results indicate that chloride diffusion is controlled by both the biodeposition and the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.