Abstract

Density change occurring in ductile iron castings is a phenomenon far more complicated than in other casting alloys. Initially, graphite nodules grow directly from liquid phase. That is the reason for decrease in alloy density and casting expansion. Decaying carbon concentration in liquid phase adjacent to graphite nodules favours growth of austenite, which covers them isolating from the liquid. In order for graphite to grow further diffusion of carbon through thickening solid solution layer is needed. At this time expansion fades and shrinkage begins. Industrial experience shows that whether or not shrinkage defects in ductile iron castings will occur depends on wall thickness. In the paper an attempt to identify mechanism of shrinkage porosity formation in nodular iron castings during solidification was made. To that end a two-dimension simulation of binary Fe-C system solidification by cellular automaton method was carried out. Using data obtained with Thermo-CALC software, dependencies of temperature on density for each present phase were determined. For liquid phase and austenite influence of carbon concentration on density was also appended. Applying those relationships to the model, density of each individual cell of used grid as well as mean value for whole analysed region were assessed. The method allowed to consider volume fractions of phases and heterogeneity of solid and liquid solutions to find the mean density of the material. The paper presents results of computer simulation of nodular iron density change, with eutectic saturation of 0,9 to 1,1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call