Abstract

Decomposition of carbon tetrachloride in a RF thermal plasma reactor was investigated in oxygen–argon atmosphere. The net conversion of CCl4 and the main products of decomposition were determined by GC–MS (Gas Chromatographic Mass Spectroscopy) analysis of the exhaust gas. Temperature and flow profiles had been determined in computer simulations and were used for concentration calculations. Concentration profiles of the species along the axis of the reactor were calculated using a newly developed chemical kinetic mechanism, containing 34 species and 134 irreversible reaction steps. Simulations showed that all carbon tetrachloride decomposed within a few microseconds. However, CCl4 was partly recombined from its decomposition products. Calculations predicted 97.9% net conversion of carbon tetrachloride, which was close to the experimentally determined value of 92.5%. This means that in RF thermal plasma reactor much less CCl4 was reconstructed in oxidative environment than using an oxygen-free mixture, where the net conversion had been determined to be 61%. The kinetic mechanism could be reduced to 55 irreversible reaction steps of 26 species, while the simulated concentrations of the important species were within 0.1% identical compared to that of the complete mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.