Abstract
The knowledge of Cs dynamics in negative hydrogen ion sources is a primary issue to achieve the ITER requirements for the Neutral Beam Injection (NBI) systems, i.e. one hour operation with an accelerated ion current of 40 A of D− and a ratio between negative ions and co-extracted electrons below one.Production of negative ions is mostly achieved by conversion of hydrogen/deuterium atoms on a converter surface, which is caesiated in order to reduce the work function and increase the conversion efficiency. The understanding of the Cs transport and redistribution mechanism inside the source is necessary for the achievement of high performances. Cs dynamics was therefore investigated by means of numerical simulations performed with the Monte Carlo transport code CsFlow3D.Simulations of the prototype source (1/8 of the ITER NBI source size) have shown that the plasma distribution inside the source has the major effect on Cs dynamics during the pulse: asymmetry of the plasma parameters leads to asymmetry in Cs distribution in front of the plasma grid. The simulated time traces and the general simulation results are in agreement with the experimental measurements.Simulations performed for the ELISE testbed (half of the ITER NBI source size) have shown an effect of the vacuum phase time on the amount and stability of Cs during the pulse. The sputtering of Cs due to back-streaming ions was reproduced by the simulations and it is in agreement with the experimental observation: this can become a critical issue during long pulses, especially in case of continuous extraction as foreseen for ITER. These results and the acquired knowledge of Cs dynamics will be useful to have a better management of Cs and thus to reduce its consumption, in the direction of the demonstration fusion power plant DEMO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.