Abstract

AbstractThe analytical tools necessary for the implementation of inelastic methods for bridges are presented. The chapter starts with available models for the bridge deck and their role in seismic assessment, addressing not only elastic modelling of the deck but also far less explored issues like the verification of deck deformation demands in cases that inelastic behaviour of the deck is unavoidable. Then the topic of modelling bearings and shear keys is presented, which is of paramount importance in the case of bridges, logically followed by the related issue of seismic isolation and energy dissipation devices; modelling of all commonly used isolation and dissipation devices is discussed and practical guidance is provided. The next section is devoted to inelastic modelling of different types of bridge piers, which are the bridge components wherein seismic energy dissipation takes place in non-isolated structures. All types of inelastic models for members, with emphasis on reinforced concrete columns, are presented in a rather detailed way, including both lumped plasticity and distributed plasticity models. Several examples of application of the previously mentioned models to bridges of varying complexity are provided and critically discussed. The last two sections of the chapter deal with modelling of the foundation of bridges and its interaction with the ground. Simple and more sophisticated models for abutments and (surface and deep) foundation members are provided, followed by models for the surrounding ground, with emphasis on the embankments that often play a crucial role in the seismic response of bridges, in particular short ones. Soil-structure interaction modelling of bridges is presented in both its commonly used forms, i.e. linear, as well as nonlinear soil-foundation-bridge interaction analysis in the time domain. These last sections of the chapter also include a brief overview of the characteristics of seismic ground motion which is used as input for the analysis.KeywordsGround MotionReinforced ConcreteSeismic ResponsePlastic HingeBridge DeckThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.