Abstract

When a tree stem deviates from verticality, as a result of different environmental factors, patterns of differential radial growth appear. Higher rates of wood production have been observed on the lower side of the tree and lower rates in the opposite side. Biological studies on plant hormones have shown that the concentration of auxin induces radial growth. They also have demonstrated the redistribution of auxin transport in response to gravity. Auxin is then designated as a mediator for differential growth. This paper presents a model for three-dimensional (3-D) auxin transport in conifer trees, which includes gravity dependence. We obtain realistic heterogeneous patterns of auxin distribution over the tree. Then, we propose a law of growth based on auxin concentration to simulate successive differential radial growths. The predicted growths are compared with experimental results of reconstruction of 3-D annual growth of Radiata pine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.