Abstract

Polyurethane (PU) chip foam was characterised for air flow resistance, using a modification of the BS 4443 method, and for compressive impact response. A finite difference model was developed for the air flow in the impacted foam, including the effects of strain on foam permeability. It successfully predicted a non-uniform stress distribution across foam block of diameter > 100 mm, and showed that air flow is responsible for some but not all the hysteresis in this distribution for impact velocities > 3 m/s. Air pressure measurements, made in narrow vertical cavities inside impacted blocks of the foam, confirm the air pressure contribution to the total stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call