Abstract

A mathematical model of performance describing aerobic and anaerobic energy production during exercise was applied to middle-distance running data from world records (WR) and from a group of elite runners (NL). The model is based on the assumption that, above a critical power (Pc), a continuous rate of anaerobic energy production occurs, until the entire anaerobic stores (W') are depleted. The fraction of metabolic power above Pc provided by anaerobic metabolism is denoted alpha. A second power threshold (Pt) sets the limit above which any further increase in power is met exclusively by anaerobic sources. The oxygen uptake kinetics was described by a monoexponential equation with time constant tau. The results show that the model successfully fits the WR over 1,500-5,000 m. However, in the range of distances from 800 to 5,000 m the performance over 800 and 1,000 m were overestimated. Contrary to Pc and the anaerobic contribution at steady state oxygen uptake, the estimate of W' was sensitive to the value assigned to tau in the range from 0 to 30 s. Using best performances from 1,500 to 5,000 m in NL resulted in Pc estimates not significantly different from the metabolic power at the lactate threshold. The anaerobic contribution at steady state oxygen uptake increased from zero at Pc to 8.3% (WR) and 7.8+/-3.1% (NL) at Pt. This suggests that a substantial contribution of anaerobic processes occurs in the range between Pc and Pt, even though the exercise does not elicit maximal aerobic power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.