Abstract
Herein, we report construction of one kind of nesting-Fibonacci-super-lattice phononic crystal, in which the super-lattice cell is a well-defined Fibonacci generation sequence. We present a comparative study on band-gap structures of acoustic waves propagating in one-dimensional, nesting Fibonacci-periodic structure and simple-periodic structure. We find that there are more band gaps in nesting Fibonacci super-lattice models, and that they present behavior different from the split-up of band gaps with different generation numbers. With the increase of generation number, more band gaps split and occur. Additionally, when generation number becomes larger, Bragg scattering becomes more significant: the characteristic curves become flatter and band gaps become wider. Furthermore, we study the effect of various parameters such as density, thickness and defects on band-gap structures. Our work is significant both for understanding the intrinsic physical properties of nesting Fibonacci sequences and for providing flexible choices to meet real engineering requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.