Abstract

Designing machine tool bodies is a difficult task due to their complexity and requires a thorough knowledge of the phenomena accompanying the cutting process. It has therefore been a common practice to base design on proven generational structures, where the vast majority of machine tool bodies are assembled from materials such as steel or gray cast iron. More restrictive requirements impose the use of new materials for new constructions, related to increases in efficiency, accuracy and simultaneous reduction of energy consumption, as well as the level of noise emitted. There is a tendency to use composite materials characterized by low mass and very good damping properties. This article presents a method for modelling steel beams filled with a polymer concrete, as basic components of recently designed machine tool bodies. The modelling procedure was based on the finite element method. The accuracy of the proposed model was verified experimentally, resulting in less than 3% relative error in terms of natural frequencies. Next, on the basis of developed beam model, machine tool body consisting of steel beams filled with a polymer concrete material was modelled, resulting in 2.2% mean relative error. This paper presents the validity of the proposed model in allowing accurate prediction of the dynamic behaviour of machine tool bodies composed of steel beams filled with polymer concrete material. The presented method was used in the design process of a vertical lathe body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.