Abstract

This paper compares and quantifies the energy, environmental and economic benefits of various control strategies recovering heat from a CO2 booster system in a supermarket for space heating with the purpose of understanding its potential for displacing natural gas fuelled boilers. A theoretical steady-state model that simulates the behaviour of the CO2 system is developed and validated against field measurements obtained from an existing refrigeration system in a food-retail building located in the United Kingdom. Five heat recovery strategies are analysed by modifying the mass flow and pressure level in the condenser. The model shows that a reduction of 48% in natural-gas consumption is feasible by the installation of a de-superheater and without applying any advanced operating strategy. However, the CO2 system can fully supply the entire space-heating requirements by adopting alternative control strategies, albeit by penalising the coefficient of performance (COP) of the compressor. Results show that the best energy strategy can reduce total consumption by 32%, while the best economic strategy can reduce costs by 6%. Findings from this work suggest that heat recovery systems can bring substantial benefits to improve the overall efficiency of energy-intensive buildings; nevertheless trade-offs need to be carefully considered and analysed on a site by site basis before embarking on such initiatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.