Abstract

The current investigation proposes a novel and efficient co-generation with a methanol production process through a power plant flue gas's captured CO2 in which an alkaline reactor supplies the methanol reactor's input hydrogen. Besides, the compressors, methanol distillation tower, and methanol reactor wasted heat are used as an Organic Rankine Cycle input energy to design a multi-layer wasted heat recovery system. The energy, exergy, economic and environmental approaches are used to assess the plant performance via an Aspen HYSYS code. Accordingly, the total energy and exergy efficiencies are obtained at about 64.13% and 76%. The CO2 capture and methanol separation unit efficiencies are estimated at 42% and 80%. Regarding exergy analysis, the methanol reactor has the highest exergy destruction of about 11302.61kW. The environmental assessment reveals that the total CO2 emission equals 0.9tonCO2/tonMeOH and the Organic Rankine Cycle utilization restricts the indirect emission to the reboilers and distillation columns. Eventually, the total annual cost and total production cost of the proposed scheme are calculated as about 5,638,060dollars and 0.73$/kgMeOH, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.